Overview
The "Predicted Time Until Next Order" report is a combination of two different modeled attributes — "Order Likelihood" and "Days Until Next Order." The models look at the last 180 days to predict the next 42 days (6 weeks). Each model is custom built to the data source, retrained monthly, and new predictions run nightly.
Learn how to use the report here.
Model inputs
The information required for the model is:
- Each customer's events collected over the last 180 days
- The revenue from the customer to date
- The customer’s order frequency
- The average order value of the customer
How the model predicts
The predictions use a deep sequential neural network trained on a client’s own discrete data events. A large part of the power of the model comes from the “sequential” component. The model can account for an unknown number and type of events per input, including events proprietary to a customer, like a product finder or a fit wizard, taking into account the period when they occur, without attempting to normalize or reclassify into consistent inputs. The model also works on anonymous data, not just on customers who have already made a purchase.
How the model gets evaluated
The platform holds a separate sample of your data when it creates the model. This sample, or training set, allows predictions to be made. These predictions get compared to actual events.
The model is optimized to a measure called recall. With recall in mind, the goal is to find everyone likely to convert. In general, those with any likelihood to purchase have 40x the conversion rate of those who are unlikely to purchase. "Extremely likely purchasers" can be as high as 100x (or more) the conversion rate of those unlikely to purchase.
Model thresholds
While the model quality is different for every account, we expect the “Extremely Likely” category of customers to convert at a very high rate, followed by "Very Likely," and "Likely." Once optimized for recall, the model ranks customers by likelihood and divides into sevenths, where the first seventh is "Extremely Likely"; the next two-sevenths are "Very Likely"; and the final four-sevenths are "Likely." All other customers are considered "Unlikely" to purchase.
For the data scientists
Finally, if the language of model engineering is your native tongue:
- The likelihood classifier typically has an AUC greater than 0.9
- The model is biased to have high recall and low precision because the goal is to assist in identifying identify strong candidates to message and not merely to predict the future
- The Mean Average Error of our “Days to Convert” metric is overall around 13 days but more accurate when there’s a strong intent signal or the likely conversion is close in time